PHYSICAL REVIEW E

VOLUME 49, NUMBER 6

JUNE 1994

Dynamical behavior of a free-electron laser operating with a prebunched electron beam
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A prebunched electron beam can be exploited to reduce the rise time of a free-electron laser (FEL) os-
cillator, or to provide the start-up signal for an amplifier. We discuss the dynamical behavior of FEL’s
operating with prebunched electron beams, and analyze different regimes of operation, from low signal
up to saturation. We also include short pulses effects, discussing the modifications occurring in the FEL
pulse propagation equation and analyzing the relevant small signal dynamics.

PACS number(s): 41.60.Cr, 41.85.Lc, 52.75.Ms, 07.77.+p

I. INTRODUCTION

The dynamical features of a free-electron laser (FEL)
operating with a suitably prebunched electron beam have
been recently discussed [1,2] and it has also been stressed
that a prebunched electron beam may be a unique tool to
provide the start up of a FEL amplifier in regions of the
spectrum where coherent seed sources are not available
[3-5]. FEL oscillators too may benefit from a pre-
bunched operation and in fact the rise time of the laser
signal, namely, the time necessary to reach the satura-
tion, may be significantly reduced without affecting the
final saturated power. Very roughly speaking, the beam
prebunching provides an additional gain, which, under
specific conditions, may give a contribution comparable
to or even larger than, the intrinsic gain of the system.
We analyze the dynamical behavior of a FEL oscillator
operating with a prebunched electron beam and discuss
under which conditions the harmonic content of the
beam may provide coherent contributions to the signal
start up. The treatment will be extended to the amplifier
case and to FEL operating with short pulses. This last
problem will be studied discussing the modifications
occurring in the FEL pulse propagation equations when
the prebunching corrections are included. In particular,
we consider the modifications occurring in the so-called
supermode (SM) dynamics [6]. The paper is organized as
follows. In Sec. II, we analyze the small signal behavior
of a prebunched FEL oscillator, saturation is included us-
ing a simplified model whose correctness is then checked
by means of an accurate numerical analysis. Section III
contains some considerations on the dynamical behavior
of a “seedless” FEL amplifier (SFELA). The modified
FEL pulse propagation equations including prebunching
are discussed in Sec. IV, where we also analyze the small
signal behavior of the laser pulses. Section V is finally de-
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voted to concluding remarks. In Appendix A we consid-
er the prebunched FEL dynamics and induced electron
beam energy spread and show that the numerical results
can be reproduced by simple equations. Appendix B is
devoted to the high gain corrections. Finally in Appen-
dix C we discuss a simple perturbative analysis of the
Liouville equation ruling the evolution of the longitudinal
phase-space evolution of an electron beam undergoing a
FEL interaction.

II. PREBUNCHED FEL OSCILLATOR DYNAMICS

The dynamics of a FEL operating in the long bunch
condition, namely, in the case in which slippage effects
can be neglected, is governed by the pendulum equation

(71,
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The electron relative phase with respect to the radia-
tion field is denoted by £(7), |a| and ¢ are the amplitude
and phase of the dimensionless optical field, g, is the
small signal gain coefficient, and ( ) ¢, Tepresents an aver-

2.1

age over the electron initial phase §,. (For further insight
the reader is addressed to Ref. [7].)

Equation (2.1) holds either in small and strong signal
regime. Useful information can be, however, inferred
considering its small signal limit, which is obtained ex-
panding all the relevant quantities up to the first order in
the amplitude a. According to Ref. [8], the equation
governing the evolution of the optical field in the small
signal regime is

d —ivaT . T —ivpb
7;61=—‘27Tg0b1€ °+17rg0fod§§e ®a(r—§)

+imggb,e _Zivoffofdg t_‘;‘a"(v’-—g)eivo§ .2

We have implicitly assumed that the electron beam con-
tains an initial phase distribution

5668 ©1994 The American Physical Society



49 DYNAMICAL BEHAVIOR OF A FREE-ELECTRON LASER ... 5669
pilid ivg, —ivyT —ivyT
fE)= 3 bye ™ by=1 (2.3a) 2(1— )—vorie O +1)
"= — o a(r)=a, |1+mg,
v
and, thus,
) b sin( ’VOT/Z ) —ivgr/2
—i —i TEmgo0 | T 5
(e ™) =5 [Tdtof (G0l 0=, , ve/2
(2.3b) ﬂ'gobz

G0y =5 [T dbof (Gole " 0=b,

Equation (2.2) has been carefully treated in Ref. [8]. It
has, in fact, been shown to reduce to a third order ordi-
nary differential equation of the type

—2ivyr

@(1)+2ivid (1) —via(r)=ingy{a () +bya*(T)e J

(2.4a)

where the dots denote derivatives with respect to 7. The
initial conditions of (2.4a) are specified by

a(0)=a,, a(0)=-—2mgyb,, d(0)=2mivegeb, . (2.4b)

The possibility of a seedless operation is due to the fact
that a nonzero b, coefficient ensures initially nonvanish-
ing first and second derivatives. An exact solution of Eq.
(2.4a) can be obtained if the contribution due to the
coefficient b, can be neglected. However, just to see what
happens during the early stages of the interaction, we
write the solution in terms of the Taylor expansion

© (n)
a(r)=3 ﬂ)_,.n ,

" (2.5)
n=0 n:

where the superscript (n) indicates the nth derivative. At

the initial times the various a (0)(n > 3) are provided by

the recursive relation
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In particular, for initially vanishing field, we find

a®(0)=2mgyv3b, ,

(2.6b)
0(4)(0)= _217'lg0[‘V(3)b1 +1rg0(b1 +brb2 )] .

It is, therefore, clear that the terms containing b, start
playing a role at relatively large times and that the emis-
sion process is dominated and driven by the b,
coefficient.

Equation (2.2) is an integrodifferential equation which
can be solved using a naive series expansion and, the
lowest order term of such an expansion, yields

+

3 a; l[vo'r— sin(v,y7) ] sin(vqy7)
Yo
8in(2v,y7) —2(vpT) cos(v,yT)

—i >

2.7

The above result can be viewed as the low gain evolu-
tion of the optical field and contains three distinct contri-
butions.

(1) The term proportional to a, displays the usual
behavior and leads to the well known gains equation.
(The part multiplaying g, yields, at =1, the complex
gain function.)

(2) The term proportional to b, provides the coherent
spontaneous emission.

(3) The last term is proportional to b, and, therefore,
describes the part of the field evolution due to the second
order bunching coefficient.

It is now worth mentioning an interesting point. If we
define the gain in the usual way

_la(*=la(0)?

) 2.8)
la(0)?
and neglect the g2 contributions, we end up with
G 3 | sin(vy/2) 2
- ﬂgo a‘Vo ‘Vo/2
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0
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The first term is the usual antisymmetric FEL gain.
The last two contributions, improperly called gain terms
since they depend on the initial field amplitude a,, may
help the signal growth according to whether the y phases
are properly adjusted. Although in an amplifier experi-
ment the phases are randomly distributed and, thus, the
new contributions average to zero, in an oscillator
configuration the field coherently rearranges the phases
in such a way that after each round trip the bunching
dependent terms may positively interfere. Such a conjec-
ture may be verified using a rather trivial oscillator mod-
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el. Denoting with n the index of the round trip we as-
sume that the oscillator evolution can be reproduced by
the rate equation

a, 1 ={a,[1+7mgyA(v)]—2mg,b,B(v)

+mgobrafC(V)}V1i—n. (2.10)

The v functions 4,B,C are those appearing in Eq. (2.7)
at 7=1 and 7 denotes the cavity losses.

Equation (2.10) accounts for the small signal and low
gain evolution of the intracavity optical field. Prelimi-
nary, albeit not fully correct information, can be obtained
transforming (2.10) into an ordinary differential equation.
Neglecting the b, term (such an assumption will be
Justified below) we get

d
T =(1=8)mgoA(v)=£la
—2mgob (1—E)B(v) (E=1—V1—7), (2.11a)

assuming that g is initially vanishing, we get
[(1=8)mg, 4 (v)—g]n_

a(n)=—2mgyb,(1 §)B(V)(1—§)1rgoA(v)—§

(2.11b)

It is, therefore, clear that one can associate to the b,
contribution an equivalent seed intensity. More quantita-
tive considerations can be developed if we note that the
square modulus of the dimensionless amplitude a is
linked to the FEL saturation intensity

4
1
Is (MW /em?)]=6.9%10? | L
(s ] N | (A, (cm)IKf5(6))?
(2.12)

by the relation

lal?=0.87% |— |, @13

S

where y is the electron-beam relativistic factor, N is the
number of undulator periods, A, is the undulator period
length, K is the undulator parameter, and
SlE)=Jo(E)—J,(£) is the Bessel-factor correction,
where £=1K2/(14+K?/2). In terms of these, the
small signal gain coefficient is g,=(87N3/
YIO){[AKfp(E)*/ZE}I /1, where 2 is the electron-
beam cross section and I,=17000 A is the Alfvén

current. According to Eq. (2.11a) the contribution of the
coherent spontaneous emission is

[cs (MW/cmz)]Z%gﬁlbllz[ls (MW /cm?)],
(2.14a)
and since

1olls (MW/cmz)]=#[PE (MW /cm?)] ,

(2.14b)
[Pz (MW /cm?)]=[E (MeV)J (A/cm?)],

we can write (gq]b, |2 <<1)
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[Ics (MW /cm?)]=pu[Pg (MW /cm?)],
5 (2.14c¢)
_8 olb,!

F="an
and u defines a kind of efficiency of the one pass coherent
spontaneous emission process. Let us now go back to Eq.
(2.11), and write it in practical units so that the evolution
of the field intensity can be cast in the form (£ <<1)

2
2[(1—=&)mgy Red(v)—£]n
S -

5 2| BV
Im)=—2[b\[*) 270

(2.15a)
We have assumed n large enough that the —1 contribu-
tion on the right-hand side of (2.11b) can be neglected.
According to Eq. (2.15a) the seed equivalent term for the
field evolution is

B(v)

2
A(v) Is

(2.15b)

5 2
I,~ b
0 7r4| !

evaluating the v dependent functions at v=2.6 and
neglecting the losses we find

I,~1.54]b,|’I5 , (2.15¢)

and it is interesting to note that I is independent from
the electron-beam current. A modest bunching
coefficient, of the order of few percent, may provide an
input I, which is a relatively large number (of the order
of 10_315 ), the rise time of the oscillator can be, there-
fore, significantly reduced. In particular, assuming that
the onset of saturation is reached for I(n*)=1I5 we find
from (2.15) (n* is the number of round trips correspond-
ing to the rise time)
In[1.54|b,|?]

n*~——— |
a

where a is the net gain of the system. Oscillators operat-
ing with a not prebunched electron beam have a typical
rise time with n * specified by

(2.16)

an*~21. (2.17)
The prebunching reduces, therefore, the rise time of a
factor — In[1.54]b,|%]/21. Assuming, e.g.,

|b,|~3.5X 1072, we find that the rise time is reduced by
a factor of 3.

The small signal dynamics of a low gain prebunched
FEL oscillator is shown in Fig. 1, describing the round
trip evolution of the intracavity optical field intensity.
The figure indicates that the rate equation (2.10) and the
analytical solution of its differential reduction [see Eq.
(2.11b)] provides almost identical results. The discrepan-
cy derives from the last term in Eq. (2.10) containing the
b, coefficient and neglected in Eq. (2.11a). The correc-
tions due to the second order bunching becomes appre-
ciable at large round trip numbers, when the field is large
enough that saturation effects are significant. The contri-
butions due to b, are therefore canceled by saturation.
Equation (2.11b) may be, therefore, considered fully reli-
able for the description of the small signal regime dynam-
ics.
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FIG. 1. (a) |a|? vs v at different round trips.

(b) |@max |? vs the round trip number.

3
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Saturation can be easily included, using the semianalyt-
ical model of Ref. [9]. The intracavity power growth can

be reproduced using the rate equation (n denotes the
(2.18)

round trip number)

100
the input value of the iteration is x,=1.54|b,|%. The va-
lidity of the model has been tested in the case of a not
prebunched operation and Figs. 2 and 3 confirm its valid-
ity for the prebunched case too. The physical informa-
tion contained in Fig. 2 are worth stressing.

(a) The first few round trips are dominated by the
coherent spontaneous emission.

(b) When the field is large enough the evolution be-

comes predicted by the small signal theory.
(c) The seed intensity I, [see Eq. (2.15¢)] is obtained ex-

x,,+1=(1—7])[G(x,,)+l]x,, ,
where
x=I/Ig,
| ——B5 (2.19)
G(x)=Gppay £ , B= —121 1.0145 , trapolating the linear behavior.
Bx (d) The induced electron-beam energy spread reflects
the optical field dynamical behavior. In correspondence
of I,, namely, extrapolating the linear behavior of o vs
106 | ; 1 [MW/cm?] n, a o, can be introduced. Such a value can be
H 108 I 1iMw/cm2) —=
105 |
105 | 'll
104 ,"l
104
103 | 0gx105 !
103 !
102 - 4 ,’laexios
i |
10" E‘ I" ,’/
R —— Simulation 10' | ! ,",
----- Analytical
100 1 1 1 1 ::‘”
0 20 40 60 8 100 /
Round trips 100 S L 1 L
0 20 40 60 80 100
Round trips
FIG. 3. FEL intracavity dynamics: — — — prebunched case
(same parameters as Fig. 2); nonprebunched case input

approximation (analytical result);
y=420.7

b,=—2.79%1073,
I=3.08X 10° MW/cm?; G ~0.513.

FIG. 2. Prebunched FEL dynamics. (I) — — — Small signal
cluding saturation; o.= induced energy spread (numerical);
N =40; 80=0.5462;

numerical results in-
seed I,=10""I5.
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FIG. 4. Same as Fig. 2. g,=2.728; Is=2.36X10° MW/cm?.

quantified as (see Appendix A)
ol ~ 0.678 b, |
£,0— N 1
which is in agreement with the results of the simulation
(see Fig. 2). The comparison between prebunched and
conventional operations indicates that the predicted
reduction of rise times may be considered reliable.

As already remarked the analysis developed so far does
not include high gain corrections which becomes impor-
tant when g, >0.5. Figure 4 shows that the low gain ap-
proximation leading to Eq. (2.7) is reasonably good even
for large values of g,

Further comments are given in Appendix B.

III. SELF-AMPLIFICATION OF PREBUNCHING

In the previous section we discussed the dynamical
behavior of a FEL oscillator operating with a prebunched

(2.20)
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electron beam. We have seen that one of the most
significant effects is a reduction of the rise time of the op-
tical signal, since the bunching coefficient provides a kind
of equivalent input seed.

Also in the case of a FEL amplifier the start up “seed”
is linked to the bunching coefficient and a preliminary
idea of the prebunched FEL amplifier is obtained solving
Eq. (2.2) at the resonance (v,=0).

In this case, the solution can be obtained in the form of
a series

a(r)=3 a,(r), (3.1a)
where
4
ag(T)=—2mgoby7, a,=2i(mge)(by+b1by) o,
@y, 41 =200 N mgy)" T b, +btb,)
| ;22 ) 7_3n+4
X(1=b, [ 72 3.
( T G T G.1b)
7_6n+1
azn=2(—1)"(Wgo)2"+lbl(l—|b2|2)n(6n +1n

The above series is very fast convergent and confirms
the rather unimportant role played by the coefficient b,
(Fig. 5). Neglecting b, Eq. (2.2) (at v,=0) can be solved
in closed form, namely [8],

2ib ( TE )2/3 —i 1/3 e 1/3
1 0 i(mg )2t : 172(V3+i)mg )37
a= {e 0 ezfr/3e 0

3

: —1720V3+i)mg ) 3r
ez1r/3e 0

+ . (3.2)

A comparison between solutions (3.2) and (3.1) is given
in Fig. 6. For g, =100, five terms in the series (3.1a) are
sufficient to reproduce the exact solution, when g, takes
larger values further terms should be taken into account.

Equation (3.2) is rather interesting from the physical
point of view. The field evolution is indeed dominated by
the exponential having the argument with positive real
part. The square modulus can be, therefore, approximat-
edas [T=Z/(A,N)]

a2~ 4(b,|*(mgo)*” LAVPZ/N,)
9

8o

103 ) zwn
a lal
lal2 109
100+

)
)

/\
3333
nwunn
=Nw

107

101 b

\
\
\
\
5
1
o
=)
2

103

T

105 101
103 F

107 +
105

109 L L L L L 107 L s L " s

FIG. 5. (a) |a|? vs 7 solution (3.1a) and vari-
ous order of approximation (g,=100,
b;=107% 5,=1073). (b) (go=1000,
b,=10"3%b,=107%).
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103 oM
2 lal2
lal2 109 b
o b q. (3.1b)
107
10 105
103 k e FIG. 6. Comparison between solutions
100 F (3.1b) (including the first five terms) and (3.2)
H g (a) (go=100, b1=10_3; b2=10—3). (b)
108 1011/ (80=1000, b, =103 b, =10"3).
103 5
107 f
105
109 . . — 107 L
0 02 04 06 08 10 12 0 02 04 06 08 10 1.2
T T
where Z is the longitudinal coordinate along the undula- p
tor direction. a(1)=—2wgy) |b;T+i(mgy )b, +bfb2)z (3.7)
Using Egs. (2.12)-(2.14) we can write (3.3a) in practical )

units, i.e.,
v
[I (MW /cm?)]=~4b,|’p[ Pg (MW/cmz)]e4 WZ/NA)
(3.3b)

In this case, the seed equivalent intensity is provided
by

[I, (MW /cm?)]=|b,|%p[Py (MW /cm?)] . (3.4)

Recalling that p is the efficiency of a high gain FEL
amplifier with constant parameter and that p[Pg
(MW /cm?)] is the power density at the saturation, we
can conclude that

(I, (MW /cm?)]=b,|*[I,, (MW /cm?)] (3.5)
and that the saturation length is linked to the bunching
coefficient by

Z . (3.6)

Ay 3

~——r—In |+

2\/§p |b,

The general behavior of the signal growth in the high
gain regime is characterized by a first part, which is
essentially quadratic. In this region, the evolution is
dominated by the coherent spontaneous emission term,
ao in Eq. (3.1b). To understand the extension of this re-
gion, we keep the first two terms of the series (3.1a) and
write
]

_é_a (Z,T)= —ivyT

3y —27gob (Z +AT)O(Z +AT)e

+ingygo(Z +Ar)fofd7"(1'—'r')a [(Z+A(r—7'),T']e

Xfofdf’(f—r')a‘[z+A(T—1-'),1"]e ,

Neglecting the coefficient b, we find that in Eq. (3.7)
the second term dominates on the first if

172
|
4 (3.8a)
(1Tg0 )
or, equivalently,
A,
Z >0.2297 . (3.8b)

In Fig. 7 we compare the evolution of the field for seed-
less and seed injected amplifiers. In the former case, the
beam is assumed to be prebunched with bunching
coefficient b, in the latter, the field evolves from an ini-
tial seed a,=2b,(mg,)?/’. Further comments are
presented in the concluding remarks.

IV. PREBUNCHING AND PULSE PROPAGATION

The analogous of Egs. (2.1), when short pulses effects
are included, reads (7]

a%a(z,f)=—2wgoa(z +A7) exp[—it(Z +A7,1)]) ,
: 4.1)
(=la(Z —A1,7)| cos[E(Z,7)+$(Z — AT, T)],

where 0(Z) is the longitudinal electron-beam shape and
A=NA is the slippage length. Using the same procedure
as before, we write the small signal limit of (4.1) as

—ivglr—"7)

+ingoo(Z +AT)b,(Z +AT)

—ivglr+7) 4.2)
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101 103
a)
lai2

101

10!

105

109 | ,
107 |

b)

101 n 1 L n i

[4
109 )

lal2
107

the bunching coefficients are, in general, functions of Z,
but here, for the sake of simplicity, we will ignore such a
dependence.

As we have already remarked, when the field intensity
is low, the emission process is dominated by the coherent
spontaneous emission. In this case, the Oth order field is
a Z-dependent function which can be derived from the
equation

9 4 (Z,1)=—2mgoa(Z +Arbe 0T (4.3a)

ar

which can be solved in a rather straightforward way. Set-
ting indeed

a . a —iv,T
—é:ao(Z,T)= —27mgeo |Z +lAE); bie °, (4.3b)
we immediately find

)
aog(Z,7)=—27mgq0 |Z +1A5;;
sin(vg7/2) —iv
— = o7/2 (4.4)

Vw2

FIG. 7. Comparison between seedless (a)
r and seeded (b) amplification. Input seed
ap=2b(mgy)*3, b, =10"%, (a) g,=10, (b)
g0 =100, (c) go =1000.

If, furthermore, we assume that the electron-bunch shape
is Gaussian,

_ 72 2
o(Z)=e 2% 4.5)
The solution (4.4) can be cast in the form
ao(Z,T)=—‘21rg0b1
n
<01 —i Z
X e — nH I
EO nt |va | Helin V2o,
72 02
. Z2/(20%)
y KN " | sin(vy7/2) —ivyr/2
v, vo/2 ’
(4.6)

where H, denotes the nth order Hermite polynomial and

A

K oy

4.7)

is the coupling parameter measuring the importance of
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20
lag(z)12
15+
1.0+
0S|
0 L
-4 -2 0 2 4

2o,

FIG. 8. Coherent spontaneous emission vs Z. v,=0; go=1;
by =1/V2m p.=1.

the slippage effects. When u. is a small quantity, i.e.,
when the slippage distance is small compared to the
bunch length, the field generated by the coherent spon-
taneous emission reproduces the electron-bunch shape
(see Fig. 8). For larger u, values some deformation
occurs owing to the contribution of higher order terms.
Neglecting the b, coefficient, Eq. (4.2) can be written as

%a (Z,7)=—2mgob,a(Z +Ar)e ™
+ingogo(Z +AT)
x [dgga(z FAET—E)e F, @4.8)
and its small signal limit can be obtained setting
a(Z +A§,71—§&)=a(Z +AE,7) . 4.9)

With this assumption Eq. (4.8) can be cast in the integral
form

T —ivyT
a(Z,T)=a(Z,0)—-217'g0b1foa(Z +Ar)e dr
+ing, fofa(Z +Are " dr
X [Ta(Z +Ag 1) "TdE,
0
(4.10a)

rearranging the limits of integration in the last part of
(4.10a) we find

a(Z,7)—a(Z,0)=ing, fofdf"a (Z+AT",7)e CA

X [Tdr'o(Z +A7)
-

—2mgyb, fOTa(Z +A)e gy

(4.10b)
Finally setting
Z+ATr=2Z,
4.11)
A=y,

we end up with

5675

a(Z,T)=a(Z,O)_2‘n_%blfATU(Z +X)e—i(vo/A)de

+11'r———f dy a(Z +y,r)ye A

<f.

Equation (4.12) can be exploited to derive the round trip
evolution for a FEL oscillator operating with short pulses
in the low gain small signal regime. Taking into account
the fact that the cavity should be shortened by an amount
8L to compensate the lethargy, we get

dZ a(Z). (4.12)

a(Z —28L,n +1)

2m7gob —iv,
= |a(Z,n)— ? 1foAa(Z+)()e (°/A)de
+z—f dy a(Z +x,m)ye XY
x [Fazo2)|vi—g. @1y
X

Assuming small losses, expanding a(Z —28L) up to
the first order in 8L and transforming the rate equation
into a differential equation, we get

da(Z) da(Z)
2T, —— ar —— +(Ag0)—=— 3z +mna(Z)
(27)3%gob —i(v,
=—9 #gOIff(Z+) (ox/A)dX
i2m)%gy oa v
ivg(x/8)
_—FAZ fo dya(Z +x)xe
x [ r2az, (4.14)
where T, is the round trip penod and t/T,=n,
1 A s
(Z)=——— z,
f V2no, ¢
9__48L 4.15)
8oA

0 is the cavity detuning parameter, where o, is the
electron-beam rms bunch length, A=NA,, and
A, =(A, /2y*)(1+K?/2). Equation (4.14) is the equation
deﬁmng the SM (see Refs. [6,9]) plus a source term due to
the electron-beam prebunching, Eq. (4.14) can be recast
in the more convenient form

3 (zn=Bf(Z)+Ra(Z,7), 4.16)
P

where
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372 —i
B=—2i BT (8 Ty

pe Yo
= iglfrl):_:zfAdX X[_e—i(x/A)OoF(Z)
+F(Z+A)e Y0
—(Ae)—a%—i- ] : 4.17)
oo=vo+iAaiZ, ?=ggoTic,

and F(Z) is the primitive of f(Z). It has already been
shown that SM’s are eigenfunctions of the operator R
and that they provide a biorthogonal system [6]. The
source term and the field a(Z,7) can be expanded in
SM’s, namely [the SM are denoted by U,,(Z)],

Bf(z)=%cC,U,(Z),

(4.17a)
a(Z,7)=3 a,(FIU,(Z),

thus, getting for a,, (%) the first order differential equation

—d—am =C,,tA,a
d7

. (4.18)
where A, is the eigenvalue of the mth SM. Assuming
a,,(0)=0 we find

(4.19)

The conclusion is, therefore, analogous to those
relevant to the continuous beam case. The field growth is
initially driven by the coherent spontaneous emission,
which can be projected on the SM basis and the evolution
of each component is given by Eq. (4.19). For sufficiently
large times (after the first few round trips), the field evolu-
tion can be viewed as that of an initial input amplitude,
given by

Cn
a)(Z2)=3 —U,,(Z) . (4.20)

A

m m

The intracavity evolution of a prebunched FEL oscilla-
tor with the inclusion of pulse propagation effects is
shown in Fig. 9.

The figure shows electron and optical pulses at the un-
dulator input after each round trip. It is evident that
after the first round trips the optical pulse becomes nar-
rower and it slips behind the electron pulse because the
cavity length reduction is not sufficient to compensate the
lethargy.

V. CONCLUDING REMARKS

We have discussed the dynamical behavior of a FEL
operating with a prebunched electron beam but we did

1.0 1.0
1st 6th
0.5+ 0S|
0 0
4 2 0 2 4 4 2 0 4
2/0, z/o,
1.0
gth
05+
0
-4 4
2/0,

FIG. 9. Intracavity pulse evolution at different round trips
(n=1,6,9) (b;=0.01, g,=0.5, n=0.1, p.=0.5, 6=0.232).
The dotted line is the electron bunch profile and the continuous
line represents the optical field profile.

not clarify how such a prebunching can be achieved. In
the case of FEL operating at long wavelength with short
pulses, the bunching mechanism may be naturally provid-
ed by the radio frequency accelerating system itself [1].
In the case of shorter wavelengths, the most efficient
bunching mechanism is the FEL itself. To give a further
idea on the usefulness of a prebunched FEL operation we
consider the setup of Fig. 10. Two FEL oscillators are
separated by a drift region. The same electron beam
drives both oscillators and the second is assumed to be
turned at a harmonic of the first. When the intracavity
power increases in the first oscillator the electron beam
undergoes energy modulation and bunching which may
favor the FEL dynamics in the second oscillator. It has
also been shown that the bunching coefficient of the nth
harmonic is a function of the intracavity power. In the
case of the third harmonic, including also the effect of a
dispersive section, we find a bunching coefficient at the
second undulator input given by [8]

3/2

1 (5.1)

S1

where 8=Lj, /L (see Fig. 10), I, and I, refer to the
intracavity and saturation intensities of the first oscilla-

|by| ~0.2(14+8)*7°

e-beam

Sy O )

L - - Le -

L]

FIG. 10. Schematic layout of a tandem FEL device (e beam
denotes an electron beam).
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tor. According to Eq. (2.15b) the input seed of the
second oscillator is proportional to the cube of the intra-
cavity intensity of the first. This simple result gives an
idea of the role played by energy modulation, bunching
and energy transfer. Equation (5.1) holds far from satu-
ration. When nonlinear effects arise the dynamical
behavior of the two coupled oscillators becomes more
complicated and will be discussed in a dedicated paper.

In Sec. III, we have discussed the dynamical behavior
of a SFELA and we have discussed the field evolution at
v,=0. The behavior at v,70 is not significantly different.
In the high gain regime the maximum of the
amplification occurs at v,=1.7 and, for large times, can
be reproduced by

oMb wrezn,
|al g
. V3 Yo
X {1+5(6— 3v0)(7r—g0;m . (5.2)

A final point we want to touch is that relevant to the
energy distributions. When we derived Eq. (2.2), we have
averaged on the relative phases &£, but not on the
different electron energies. To give an idea of how energy
distribution effects should be included and how these may
modify Eq. (2.2), we consider the case of a prebunching
induced by a FEL interaction and take into account the
by,1(v) coefficients only, which read (for the details see
Appendix C)

bo(v)=f(v),
. (5.3)

b]('V)':laol e —1 'aa_vf(V) N

2y
where a, is the amplitude of the field inducing the bunch-
ing and f(v) is the energy distribution of the electron
beam, which is assumed to be Gaussian and, thus,

(v—v,)?
)2

_ 1
Sv) -————-——W—T(Wﬂe) exp

u.=4No, ,

Bl 2(mu,
(5.4)

with o, being the rms relative energy spread. According
to (5.3), Eq. (2.2) should be modified as follows

da
P —2mgoB,(vo; e, ;)

—ivgb= [l £/2]

+img, fo’dgge (r—&) (5.9

and
+o| _;-e —1 9
BI(VO;ME,T)=,aOlf_w [e J T—_iv__g;f(v)]d‘v .

(5.6)

If the beam is monoenergetic, u.—0 and f(v) become a
Dirac function so that

9 _;.e "—1
BI(VO;#E;T)='_|00[ {Ee 'w'e—zv—— ]v_v . 5.7
=%

In a forthcoming note, we will present a more detailed
analysis including the evaluation of higher order bunch-
ing coefficients.

APPENDIX A

One of the byproducts of the FEL interactions is the
energy spread induced by the interaction itself on the
electron beam. It has been shown that this quantity can
be parametrized using a rather simple scaling relation [9]

172
_Bx

- (A1)

R I

As for the gain saturation, o,;(x) is just a function of x,
which is the ratio between the intracavity and saturation
intensities.

A small value of x, (A1) can be approximated by

172
_0.433 | Bx

cr,-(x) N 2

(A2)

Using for x, the value predicted by Egs. (2.15¢), namely,
xo=1.54|b,|%, (A3)

we find Eq. (2.20), which can be viewed as the equivalent
intrinsic energy spread of the electron beam.

APPENDIX B

We have already stressed that the coefficient b, scarce-
ly affects the evolution of the optical field a. Equation
(2.2) can, therefore, be written as

d —ivyT . T —ivyé
7.9 =—2ngobe ° +11rgokfod§[§e e (r+8)],
(B1)

where A is a convenient expansion parameter. Equation
(B1) belongs to the class of Volterra integrodifferential
equations and, thus, the solution expressed as the series
expansion

a(r)=3 Aa,(7), |A|l<o (B2)

converges for any A value.
Here we report the first three terms of the series

(ag,;2(7)) omitting the contributions containing g3

corrections

sin(vyr/2)

V0/2

—ivgr/2
’

ag(T)=ay—2mgyb,

Al—e ") —ivgrie O+1)
3

al(’r)=a0'n'go

Yo
, (VP +avgr—6ie " +6i +2vyr
+b1('ﬂ'go) 4 >
Yo
(1T )2 (B3)
a,(1)=a, 20 {60—i24vyr—3v3r?

Vs
—ivyT,

—e [60+i36vyr—IvErr —ivar’]}

+0(gd).
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The contributions with gg§ !

gain corrections.

provide the so-called high

APPENDIX C

The average appearing in the second of Egs. (2.1)
should be written including the energy distribution.
Denoting with p(v,{) the electron-beam distribution in
longitudinal phase space, we perform the averages ac-
cording to the prescription

Op=ae [Tae [ pwb). cn

The phase-space evolution of an initially unbunched
electron-beam undergoing a FEL interaction is specified
by the Liouville equation

% ___ 9 2 0p
” va§p+|alsm§ e (C2)

We assume that the electron beam is at the initial time a
function of v only

pv,6;0)=f(v) . (C3)

We perform the low gain approximation so that |a| can
be kept constant during one interaction time and solve
(C2) using the naive series

p=3 lal"p, ,

P (0)=F (V)8 .

Inserting (C4) in (C2) we find the recursive relations
(n>0)

a%_p,, = —vaié_pn + siné‘%pn —15 (Cs5)
whose solution is (rn >0)
pnzema/ag)aiffd,rfevr%a/a;) Sin§ipn—1] ) (C6)

v Yo v

Since

polm)=f(v), (C7)
we find

pl(T):fonT' sin[§+v(7’—'r)]*aa;f(v) , (C8)

which have been derived using the identity
edd/d) f(x)=f(x +a) . (C9)

Up to the lowest order in |a| we find

cos(E—vr)—cos{ O

p(&v;T)=f(v)+lal WAREI(®IY
The b, coefficient will be specified by
1 27 —; e ""—1 3
2 . o oy N S T
Py p(&,v;T)e ~dE=|al > avf(v) . (Cl1)
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